Morita invariants for partially ordered semigroups with local units
نویسنده
چکیده
We study Morita invariants for strongly Morita equivalent partially ordered semigroups with several types of local units. These include the greatest commutative images, satisfying a given inequality and the fact that strong Morita equivalence preserves various sublattices of the lattice of ideals.
منابع مشابه
On Morita equivalence of partially ordered semigroups with local units
We show that for two partially ordered semigroups S and T with common local units, there exists a unitary Morita context with surjective maps if and only if the categories of closed right Sand T posets are equivalent.
متن کاملStrong Morita equivalence for semigroups with local units
Morita equivalence is a widely used tool for rings with identity. (Two rings are said to be Morita equivalent if the categories of unitary modules over them are equivalent.) For monoids, this notion is not really useful: in most cases it reduces to isomorphism. As the theory of Morita equivalence could be developed for the more general case of rings with local units, and then for idempotent rin...
متن کاملMorita Equivalence of Semigroups with Local Units
We prove that two semigroups with local units are Morita equivalent if and only if they have a joint enlargement. This approach to Morita theory provides a natural framework for understanding McAlister’s theory of the local structure of regular semigroups. In particular, we prove that a semigroup with local units is Morita equivalent to an inverse semigroup precisely when it is a regular locall...
متن کاملIDEALS IN EL-SEMIHYPERGROUPS ASSOCIATED TO ORDERED SEMIGROUPS
In this paper, we attempt to investigate the connection between various types of ideals (for examples $(m, n)$-ideal, bi-ideal, interior ideal, quasi ideal, prime ideal and maximal ideal) of an ordered semigroup $(S,cdot ,leq)$ and the correspond hyperideals of its EL-hyperstructure $(S,*)$ (if exists). Moreover, we construct the class of EL-$Gamma$-semihypergroup associated to a partially orde...
متن کاملOn Countable Completions of Quotient Ordered Semigroups
A poset is said to be ω-chain complete if every countable chain in it has a least upper bound. It is known that every partially ordered set has a natural ω-completion. In this paper we study the ω-completion of partially ordered semigroups, and the topological action of such a semigroup on its ω-completion. We show that, for partially ordered semigroups, ω-completion and quotient with respect t...
متن کامل